A Vasoactive Role for Endogenous Relaxin in Mesenteric Arteries of Male Mice
نویسندگان
چکیده
The peptide hormone relaxin has striking effects on the vascular system. Specifically, endogenous relaxin treatment reduces myogenic reactivity through nitric oxide (NO)-mediated vasorelaxation and increases arterial compliance in small resistance arteries. However, less is known about the vascular roles of endogenous relaxin, particularly in males. Therefore, we used male wild-type (Rln+/+) and relaxin knockout (Rln-/-) mice to test the hypothesis that passive wall properties and vascular reactivity in mesenteric arteries would be compromised in Rln-/- mice. Passive compliance was determined in arteries (n=8-9) mounted on a pressure myograph and in Ca2+-free Krebs containing 2 mM EGTA. Passive volume compliance was significantly (P=0.01) decreased in the mesenteric arteries of Rln-/- mice. Vascular reactivity was assessed using wire myography. In mesenteric arteries (n=5) of Rln-/- mice, there was a significant (P<0.03) increase in sensitivity to the vasoconstrictors phenylephrine and thromboxane-mimetic U41669. This enhanced responsiveness to vasoconstrictors was abolished by endothelial denudation, and attributed to impaired NO and prostanoid pathways in Rln-/- mice. Sensitivity to the endothelial agonist acetylcholine was significantly (n=7-9, P ≤ 0.03) decreased, and this was abolished in the presence of the cyclooxygenase inhibitor, indomethacin (2 µM). This indicates that prostanoid vasoconstrictor pathways were upregulated in the mesenteric arteries of Rln-/- mice. In summary, we demonstrate endothelial dysfunction and impaired arterial wall remodeling in male mice deficient in relaxin. Thus, our results highlight a role for endogenous relaxin in the maintenance of normal mesenteric artery structure and function in males.
منابع مشابه
Myogenic reactivity is reduced in small renal arteries isolated from relaxin-treated rats.
Administration of the ovarian hormone relaxin to nonpregnant rats vasodilates the renal circulation comparable to pregnancy. This vasodilation is mediated by endothelin (ET), the ET(B) receptor, and nitric oxide. Furthermore, endogenous relaxin mediates the renal vasodilation and hyperfiltration that occur during gestation. The goal of this study was to investigate whether myogenic reactivity o...
متن کاملRelaxin deficiency attenuates pregnancy-induced adaptation of the mesenteric artery to angiotensin II in mice.
Pregnancy is associated with reduced peripheral vascular resistance, underpinned by changes in endothelial and smooth muscle function. Failure of the maternal vasculature to adapt correctly leads to serious pregnancy complications, such as preeclampsia. The peptide hormone relaxin regulates the maternal renal vasculature during pregnancy; however, little is known about its effects in other vasc...
متن کاملEvidence for local relaxin ligand-receptor expression and function in arteries.
Relaxin is a 6 kDa protein hormone produced by the corpus luteum and secreted into the blood during pregnancy in rodents and humans. Growing evidence indicates that circulating relaxin causes vasodilatation and increases in arterial compliance, which may be among its most important actions during pregnancy. Here we investigated whether there is local expression and function of relaxin and relax...
متن کاملRelaxin Deficiency Leads to Uterine Artery Dysfunction During Pregnancy in Mice
The uterine vasculature undergoes profound adaptations in response to pregnancy. Augmentation of endothelial vasodilator function and reduced smooth muscle reactivity are factors contributing to uterine artery adaptation and are critical for adequate placental perfusion. The peptide hormone relaxin has an important role in mediating the normal maternal renal vascular adaptations during pregnanc...
متن کاملEndothelial-dependent vasodilation is reduced in mesenteric arteries from superoxide dismutase knockout mice.
OBJECTIVE Oxidative stress has increasingly been implicated in the development and progression of many vascular diseases. Previous work from our laboratory indicated that peroxynitrite alters vasoactive pathways in endothelial cells, which could potentially reduce vascular relaxation. To test this hypothesis in vivo, we utilized an animal model of endogenous oxidative stress, the CuZn superoxid...
متن کامل